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1 Introduction

Spontaneous loss of charge by a charged black hole is a relevant topic in the framework of

quantum effects in the field of a black hole [1, 2]. It belongs to the framework of phenomena

which are due to vacuum instability in presence of an external field, with consequent pair

creation. Quantum-electrodynamics effects in presence of an external electric field have

been in particular a key-topic which has been extensively discussed. Being our interest

oriented toward an application to black hole physics, we limit ourselves to quote two seminal

papers [3, 4] and, in the recent literature, refs. [5–7]. An effective description of pair creation

phenomenon for static charged black holes was provided by Damour, Deruelle and Ruffini in

a series of papers [8–10].1 To sum up, on these backgrounds the Hamilton-Jacobi equations

(H-J) for a classical charged particle can be easily reduced to quadrature by means of

variables separation. In particular, the radial equation describes a one dimensional motion

of a particle in a given potential. The H-J equation, beyond a positive energy potential,

1Also rotating black holes were treated therein.
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determines a negative energy potential which at classical level must be discarded. However,

at quantum level, negative energy states must be included, and a quantum interpretation

to this couple of potentials can be given. The positive energy potential determines the

allowed positive energy states, whereas the negative energy potential determines the allowed

negative energy states. The usual separation of these states occurring in absence of external

fields is not ensured a priori, and there can be regions where an overlap of positive and

negative states for the particle is allowed, i.e. the Klein paradox takes place. In these

level-crossing regions, by means of tunneling between negative and positive states, pair

production of charged particles can take place with a rate determined by the transmission

probability for the particle to cross the forbidden region between the two potentials, and

can be computed e.g. in the WKB approximation.

We improved this semiclassical picture in the case of anti de Sitter Reissner-Nordström

black holes showing that the potentials have a direct interpretation at the quantum level

without referring to the classical H-J equation [11]. Then, for the class of de Sitter Reissner-

Nordström black holes we found that level-crossing is always present, due to the peculiar

occurrence of both a black hole event horizon and a cosmological event horizon [12], and we

also considered a particular limit case, when the black hole horizon radius r+ equates the

cosmological horizon radius rc: the Nariai black hole [13–15]. The aforementioned class of

solutions contains further limit cases, corresponding to the extremal cases r− = r+ = rc,

which are called ultracold solutions of type I and II [13, 15]. A careful WKB analysis was

also performed for the Nariai case and the ultracold ones.

Herein, we develop our analysis of the pair-creation process associated with the black

hole electrostatic field, and fully exploit the fact that the aforementioned special back-

grounds allow an exact calculation of the vacuum instability. As a consequence, we can

provide for the first time, to our knowledge, exact results for the instability of 4D charged

black holes. We point out that our backgrounds are of a special character: in all the cases

the geometry involved is the one of a Cartesian product M1,1 ×S2 where M1,1 is a two di-

mensional spacetime and S2 is a sphere with constant radius (there is not any non-constant

warping factor). Moreover, the fluxes do not involve the sphere directions so that the sphere

could be effectively considered as an internal space and the problem can be reduced to a

two dimensional effective theory by means of a Kaluza-Klein reduction [16–19]. Here we

will recall manifestly the strategy of a K-K reduction in part of our analysis. Indeed, for all

cases, the Dirac equation will be reduced to a two dimensional Dirac equation on the M1,1

background, with the two dimensional spinors obtained by the two dimensional reduction

of the four components Dirac spinors and the mass spectra corrected by the K-K modes.

We also recall that in a K-K reduction the latter corrections are provided by the harmonic

analysis of the internal space S2:

µ2 −→ µ2
l = µ2 + λl,

where µ is the particle mass and λl are the eigenvalues of the Laplacian operator −∆S2 on

the internal space. In our case we are involved with harmonic analysis for spinors, and then

the Dirac “angular momentum” operator eigenvalues k = ±
(

j + 1
2

)

∈ Z−{0} appear in λl.

– 2 –
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We also take into account the fact that, both in the Nariai case and in the ultracold I

one, the real quantum state to be considered is not the Boulware-like state corresponding

to standard quantum vacuum, but the Hartle-Hawking state associated with the black

hole temperature. Then, we discuss also how pair-creation due to the electrostatic field of

the black hole superimposes to the thermal radiation effect which is present in the given

backgrounds. We show that, in the thermal means of the Dirac field number operators, a

standard thermal contribution appears together with a term which is still related to the

aforementioned vacuum instability, except for a further dependence on the background

temperature which is induced by the Hawking effect.

The plan of the paper is the following. In section 2 we recall the transmission coeffi-

cient approach to vacuum instability, and consider also how the instability affects thermal

states in the framework of Thermofield Dynamics. In section 3 we discuss the ultracold

II case, both in the transmission coefficient approach and in the zeta function approach.

In section 4, an analogous analysis is carried out for the ultracold I case. In section 5

the Nariai case is considered. In this case, the zeta function approach requires a recently

developed calculation strategy [20], which is sketched in the present paper. For all the

cases a comparison with WKB results is done. In section 6 conclusions appear.

2 Vacuum instability and thermal states

In this section, we first recall some aspects of the pair creation due to vacuum instability, in

particular we focus on the so-called transmission coefficient approach to the evaluation of

the instability, which is associated with the presence of an imaginary part of the effective

action [4], which in the following is approached also by means of ζ-function techniques.

Then we consider how instability in external fields affects thermal states, referring to

Thermofield Dynamics approach for a general fermionic case, although our interest is in

the black hole case.

2.1 Vacuum instability in the transmission coefficient approach

There are several ways one can deal with vacuum instability. One consists in Schwinger’s

approach [4, 21, 22], with calculations carried out in the correct space-time signature, or

in its ζ-function variant where calculations are developed in Euclidean signature and then

a rotation to real time is performed. As to vacuum instability, we adopt the ζ-function

variant, and a double check of our results is also provided by the so-called transmission

coefficient approach. We recall shortly some aspects of the latter, in which, following [8,

23, 24], it is also possible to reconstruct the probability of persistence of the vacuum. Let

us introduce, for a diagonal scattering process,

nIN
i = Rin

OUT
i + Tip

OUT
i , (2.1)

where ni stays for a negative energy mode and pi for a positive energy one. Ti is the

transmission coefficient and Ri is the reflection one. Moreover, in [8] one defines

ηi := |Ti|2, (2.2)

– 3 –
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which coincides with the mean number per unit time and unit volume of created parti-

cles [8]. Cf. also [23, 25]. In the case of fermions, the result is

|Ri|2 = 1 − ηi, (2.3)

which excludes any superradiant phenomenon for Dirac particles. As thoroughfully dis-

cussed in [43], it is crucial to consider group velocity for the asymptotic behavior of the

solutions, in order to get a correct physical result. In fact, an erroneous consideration of

phase velocity in place of group velocity could easily lead to conclude that superradiance

exists also for the Dirac case.

By interpreting à la Stueckelberg the scattering process, one can also obtain

nOUT
i = R−1

i nIN
i −R−1

i Tip
OUT
i , (2.4)

which is interpreted as the scattering of a negative mode incident from the future and

which is in part refracted in the past and in part reflected in the future. The new reflection

amplitude −R−1
i Ti is such that the reflection coefficient

∣

∣R−1
i Ti

∣

∣

2
=

ηi
1 − ηi

(2.5)

can be interpreted as the relative probability for the creation of the pair nOUT
i , pOUT

i . The

absolute probability is obtained by multiplying the relative one times the probability pi,0
to get zero pairs in the channel i, and then the probability pi,n of n pair for fermions is

pi,n = pi,0
ηni

(1 − ηi)n
. (2.6)

The normalization condition
1
∑

n=0

pi,n = 1, (2.7)

for fermions leads to

pi,0 = 1 − ηi. (2.8)

The persistence of the vacuum is given by

P0 =
∏

i

pi,0 = exp(−2 ImW ), (2.9)

and then

2 ImW = −
∑

i

log(1 − ηi) =
∑

i

∞
∑

k=1

1

k
ηki (2.10)

for fermions. For bosons see e.g. [8].

– 4 –
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2.2 Finite temperature effects

In the case of ultracold I and Nariai manifolds, one has to take into account that we deal

with a black hole manifold endowed with a non-zero temperature. As a consequence, we

have to consider quantum instability not simply for a vacuum state which corresponds to

the Boulware-like state of standard Schwarzschild solution, but for the state which plays

the role of Hartle-Hawking state for the given solution. Since the discover of the Hawking

effect, a very fine construction of the thermal state living on a finite temperature black

hole manifold characterized by a bifurcate Killing horizon was introduced by Israel [26]

on the grounds of Unruh analysis [27] and of the thermofield approach to thermal physics

introduced by Takahashi and Umezawa [28–30]. Israel discovered that the HH state (hence

called also Hartle-Hawking-Israel state) corresponds to the thermal vacuum of thermofield

approach with the temperature equal to the black-hole temperature, and that the would-be

fictitious states of the thermofield approach correspond to the states in the left wedge of

the extended solution (if one is living in the right wedge). In our case, one possibility is to

consider an analogous construction; alternatively, we adopt a more “liberal” attitude, in

the sense that we appeal to Thermofield Dynamics formalism and describe the equilibrium

state (KMS state) without caring about the reality of the “would-be fictitious” states in

a “specular wedge” of the extended manifold. One could also appeal to the approach

developed in [31] (where a KMS quantization, leading to a KMS state, is introduced,

without any doubling of the Hilbert space).

We show that the transmission coefficient approach at finite temperature is still a valid

approach to analyze the quantum instability problem at hand. Thermofield dynamics also

helps a straightforward generalization of quantum instability to the case where the initial

(in) and the final (out) states are thermal states (at the same temperature) instead than

vacuum ones. We could as well start from results given in [32, 33] and also in [25, 34],

which analyze stability topics in quantum electrodynamics. In order to check if there is

instability in the thermal state at the Hawking temperature, we adopt the following “stan-

dard” strategy: we calculate the mean number in the “in” thermal state of “out” particles

in the l-mode, and see if there exists any deviation from a purely thermal distribution.

Equivalently, we could evaluate the thermal mean of the number of “out” particles in the

l-mode minus the number of “in” particles in the l-mode (cf. [32]) and then see the net

effect of a possible quantum instability. In what follows, our focus is to the case of black

hole backgrounds with a single temperature, and then β is to be meant in the black hole

case as the inverse black hole temperature. Still, we point out that the following analysis

holds true for fermions in a generic thermal state with inverse temperature β.

We refer both to [8] and to [32], and first we consider the Bogoliubov transformation

for the “diagonal” case (we purposefully choose a notation which allows a straightforward

comparison with [32]; see also [8]):

aout
l = µl a

in
l + νl (binl )† (2.11)

bout
l = µl b

in
l − νl (ain

l )†, (2.12)

where l is a collective index specifying states in the Hilbert space, and where the usual

– 5 –
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CCR rules for fermions lead to

|µl|2 + |νl|2 = 1. (2.13)

We are interested in the following operator:

Nout
l (a) : = (aout

l )†aout
l

= |µl|2(ain
l )†ain

l + ν∗µbinl a
in
l + µ∗ν(ain

l )†(binl )† + |νl|2
(

1 − (binl )†binl
)

. (2.14)

For our aims, it works equally well the operator which allows to detect the net effect of the

instability (cf. [32])

N̄out
l (a) := (aout

l )†aout
l − (ain

l )†ain
l . (2.15)

We also introduce thermal state operators, according to the standard constructions in

thermofield dynamics [29, 30, 35], both for initial and final states. We omit “in” and “out”

labels in this case, for simplicity of notation, and introduce the thermal state |O(β) > and

thermal state annihilation operators al(β), ãl(β), bl(β), b̃l(β), which are such that

al(β)|O(β) >= ãl(β)|O(β) >= bl(β)|O(β) >= b̃l(β)|O(β) >= 0. (2.16)

We are mainly interested in the following relations (see also [36]):

al = s+l al(β) + c+l ã
†
l (β), (2.17)

bl = s−l bl(β) + c−l b̃
†
l (β), (2.18)

with

c+l : =
1

√

1 + exp[β(ω − ϕ+)]
, (2.19)

s+l : =
exp

[

1
2β(ω − ϕ+)

]

√

1 + exp[β(ω − ϕ+)]
, (2.20)

and the analogous ones for b-operators (which correspond to operators for antiparticles,

i.e. for negative frequency states; cf. [29]):

c−l : =
1

√

1 + exp[β(|ω| + ϕ−)]
, (2.21)

s−l : =
exp

[

1
2β(|ω| + ϕ−)

]

√

1 + exp[β(|ω| + ϕ−)]
, (2.22)

where ϕ+, ϕ− are chemical potentials for particles and antiparticles respectively [36].

In the previous formula and in the following ones, for simplicity of notation we make

a “liberal” use of indexes for quantum numbers, as far as unambiguous formulas arise. By

making use of the above relations between particle operators and thermal state creation

and annihilation operators, we easily find for particles

< N̄out
l >β= |νl|2(1−(c+l )2−(c−l )2) = |νl|2

1

2

(

tanh

[

1

2
β(ω − ϕ+)

]

+tanh

[

1

2
β(|ω| + ϕ−)

])

(2.23)

– 6 –



J
H
E
P
0
8
(
2
0
0
9
)
0
2
8

this result in the limit as ϕ+, ϕ− → 0 agrees with the result displayed in [32]. Note that

this means that

< Nout
l >β= (c+l )2 + |νl|2(1 − (c+l )2 − (c−l )2) =

1

1 + exp[β(ω − ϕ+)]
+< N̄out

l >β, (2.24)

where the former term is the expected mean number of fermions in thermal equilibrium

at the given temperature and the latter term is the net effect associated with the pair

production induced by the presence of an electrostatic field. In our notation for the the

Nariai case, we shall get

< N̄out
k >β= |Tk(ω)|2 1

2

(

tanh

[

1

2
β(ω − ϕ+)

]

+ tanh

[

1

2
β(|ω| + ϕ−)

])

(2.25)

where ϕ+ is assumed for definiteness to be the chemical potential for particles in the case

of a positively charged black hole, ϕ− = ϕ+, particles are electrons (charge −e) and

ϕ+ = −e(A0|π −A0|0) = −2eQ
B

A
. (2.26)

Formally, an analogous experession holds for the ultracold I case, which is nevertheless

pathological (cf. section 4.3). Furthermore, in analogy with Page’s analysis in [37], one

can expect that charged particles are efficiently emitted with thermal spectrum only for

small black hole masses, and then that above the corresponding threshold charged parti-

cles are emitted only because of the electrodynamic instability (i.e. as if they were emitted

in vacuum).

Moreover, we have to take into account that both in the ultracold I and in the Nariai

case we work with dimensionless (rescaled) variables and then we get β = 2π. Note also that

< 0 in|Nout
k |0 in >= |Tk(ω)|2. (2.27)

It is also interesting to evaluate the following quantity:

(∆Nl)
2 :=< (Nout

l )2 >β −< Nout
l >

2
β. (2.28)

As to the operator (Nout
l )2, being (Nout

l )2 = Nout
l , one finds

(∆Nl)
2 = < Nout

l >β (1− < Nout
l >β)

= (c+l )2(1 − (c+l )2) + |νl|2(1 − |νl|2) − |νl|2(1 − |νl|2)[(c+l )2 + (c−l )2]

+|νl|4[(c+l )2+(c−l )2](1−(c+l )2−(c−l )2)−2|νl|2(c+l )2(1−(c+l )2−(c−l )2). (2.29)

In a stable equilibrium situation, i.e. in our case in absence of electrostatic charge, one

would obtain

(∆Nl)
2 = (c+l )2(1 − (c+l )2), (2.30)

which corresponds to the first contribution displayed above. Moreover, it is interesting to

point out that it holds

< 0 in|(Nout
l )2|0 in > −(< 0 in|Nout

l |0 in >)2 = |νl|2(1 − |νl|2), (2.31)

which amounts to the temperature-independent contribution in the previous formula, where

also a third contribution, which “mixes” the pair creation effect to the thermality of the

background, occurs.

– 7 –
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3 Ultracold II case

The ultracold II metric is obtained from the Reissner-Nordström-de Sitter one in the limit

of coincidence of the Cauchy horizon, of the black hole event horizon and of the cosmological

event horizon: r− = r+ = rc. See [13, 15]. In particular, the metric we are interested in is

ds2 = −dt2 + dx2 +
1

2Λ
(dθ2 + sin2(θ)dφ2), (3.1)

with x ∈ R and t ∈ R. Then the (t, x)-part of the metric is a 2D Minkowski space,

to which a spherical part is warped with a constant warping factor. One gets Γ2
33 =

− sin(θ) cos(θ),Γ3
23 = cot(θ). The electromagnetic field strength is F = −

√
Λdt∧dx, and we

can choose A0 =
√

Λx andAj = 0, j = 1, 2, 3. It is also useful to define E :=
√

Λ, which rep-

resents the intensity of the electrostatic field on the given manifold. We note that it is uni-

form, and then one expects naively to retrieve at least some features of Schwinger’s result.

3.1 The transmission coefficient approach

Let us consider the reduced Hamiltonian which can be obtained by variable separation as

in [12]: starting from the full Dirac equation (/D − µ)Ψ = 0, variable separation leads to

the following reduced Hamiltonian:

hk =

[

−e
√

Λx− µ ∂x +
√

2Λk

−∂x +
√

2Λk −e
√

Λx+ µ

]

. (3.2)

k = ±
(

j + 1
2

)

∈ Z − {0} is the angular part eigenvalue, µ and e are the fermion mass and

charge respectively. Then one obtains the following equation for Φ = e−iωψΨ =

(

φ1

φ2

)

:

[

−(eEx+ ω)I2 + iσ2∂x +
√

2Λkσ1 − µσ3

]

Φ = 0, (3.3)

where σi are Pauli matrices and I2 is the 2 × 2 identity matrix. Let us take the unitary

transformation Φ = e−i
π
4
σ1ξ so that σi 7→ e−i

π
4
σ1σ1e

iπ
4
σ1 and in particular

(I2, σ1, σ2, σ3) 7→ (I2, σ1, σ3,−σ2). (3.4)

Then one obtains
[

−(eEx+ ω)I2 + iσ3∂x +
√

2Λkσ1 + µσ2

]

ξ = 0, (3.5)

which amounts to the following couple of differential equations

− (eEx + ω)ξ1 + i∂xξ1 +
(√

2Λk − iµ
)

ξ2 = 0,
(√

2Λk + iµ
)

ξ1 − (eEx+ ω)ξ2 − i∂xξ2 = 0. (3.6)

Then we can get

ξ2 =
1√

2Λk − iµ
[(eEx+ ω)ξ1 − i∂xξ1] , (3.7)

– 8 –
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and the following equation for ξ1 is obtained:

d2ξ1
dx2

+
[

(eEx+ ω)2 + ieE − µ2
k

]

ξ1 = 0, (3.8)

where µ2
k := µ2 + 2Λk2 is the effective mass corrected by K-K modes. We can define

y =

√

2

eE
(eEx+ ω), (3.9)

and then we obtain the following equation

d2ξ1
dy2

+

[

1

4
y2 −

(

µ2
k

2eE
− i

2

)]

ξ1 = 0, (3.10)

whose solutions are parabolic cylinder functions [38]. The calculation is completely analo-

gous to the one performed in [8], and as in [8] one can easily show that the transmission

coefficient satisfies

|Tk(ω)|2 = exp

(

−π µ
2
k

eE

)

. (3.11)

The latter expression corresponds to the mean number per unit time and unit volume of

created pairs and coincides with the WKB approximation for the same coefficient [12].

This means that the WKB approximation is actually exact for the given case. This result

is expected, being our case easily realized as a completely analogous to the standard case

except for the compact character of the 2D transverse space. By adopting the strategy

in [8], or also the one in [2] for determining the factor preceding the exponential terms, one

obtains the following imaginary part of the effective action:

ImW = −1

2

eES

2π

∑

k∈Z−{0}
g(k) log

(

1 − exp

(

−πµ
2
k

eE

))

, (3.12)

where g(k) = 2(2|k| − 1) is the degeneracy factor.

A comparison with the standard flat space-time case [4, 41] shows that the structure

of the ultracold II manifold, which is a product of a 2D flat-spacetime times a 2D sphere,

yields to the substitution of the (Gaussian) integral over the transverse dimensions with

an infinite sum over k, still to be valued. We recall that in the flat space-time case, one

finds for the 4D density of the imaginary part of the effective action

w = 2
(eE)2

8π3

∞
∑

n=1

1

n2
exp

(

−πµ
2

eE
n

)

, (3.13)

which, by avoiding to perform the integration on the transverse variables ~p⊥, becomes

w = 2
(eE)

8π3

∫

d2~p⊥

∞
∑

n=1

1

n
exp

(

−π(µ2 + ~p2
⊥)

eE
n

)

= −2
|eE|
8π3

∫

d2~p⊥ log

(

1 − exp

(

−π(µ2 + ~p2
⊥)

eE

))

,

which is of course strictly analogous to (3.12).

– 9 –
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3.2 The ζ-function approach

We tackle the problem also by the zeta function method. This will be useful later to

compare with the more difficult Nariai case. The Euclidean formulation is used. For

convenience, we recall that the spectral zeta function associated to an operator H having

eigenvalues λn with degeneration dn, is defined by

ζH(s) =

∞
∑

n=0

dn
λsn

=
1

Γ(s)

∫ ∞

0
xs−1Tre−Hxdx,

that is substantially the Mellin transform of the kernel2 KH(x) = Tre−Hx. The point is

that − log detH = d
dsζH(0) defines the Euclidean effective action. After turning back to

the Lorentzian signature, the instability is measured by the imaginary part of the effective

action, which must thus compared with the vacuum persistence computed with the previous

method. To this aim, let us consider the Dirac Euclidean equation for the ultracold II

background. The spectrum of the Dirac operator, as well-known, is neither positive definite

nor semi-bounded. To overcome this problem, one relates the zeta function of the Dirac

operator /D to the zeta function of its square, and for the sake of completeness we recall

some key points. To get the right definition, it is convenient to start with an heuristic

reasoning. Let Ψ an eigenfunction of the operator /D − µ:

(/D − µ)Ψ = λΨ.

Then we have (λ± + µ) = ±
√

/D2 and thus we can formally write

log(det(/D − µ))=
1

2
log
(

det
(

−µ+
√

/D2
))

+
1

2
log
(

det
(

−µ−
√

/D2
))

=
1

2
log
(

det
(

µ2 − /D2
))

.

The factor 1/2 arises from the double degeneration of each eigenvalue.3 Thus, it is conve-

nient to define

− log(det(/D − µ)) =
1

2
ζ ′µ2−/D2(0), (3.14)

and then for the Euclidean effective action we get

W =
1

2
ζ ′µ2−/D2(0). (3.15)

The simplest way to proceed is to compute the eigenvalues of −/D2, and next to add the

mass square µ2.

We fully exploit the K-K reduction in order to perform the ζ-function calculation. We

first note that for the 4D Dirac operator we have

/D =: /E + /F, (3.16)

2We assumed here that the spectrum is strictly positive, but in general this can be weakened by complex

analyticity techniques.
3If (/D − µ)Ψ± = λ±Ψ± then, for example, (−µ +

p

/D2)Ψ± = λ+Ψ±.

– 10 –



J
H
E
P
0
8
(
2
0
0
9
)
0
2
8

where /E depends only on variables for the first 2D factor of the metric and analogously /F

depends only on spherical variables of the last 2-sphere factor. When one considers −D2,

it is easy to realize that one obtains

−D2 = −E2 − F 2, (3.17)

and then the eigenvalue λ2 of −D2 is the sum of the eigenvalue w2 of −E2 and of the eigen-

value b2k2 of −F 2 (b is a constant related to the radius of the 2-sphere factor and k is the

usual eigenvalue for the angular momentum operator K, which is such that −F 2 = b2K2):

λ2 = w2 + b2k2. (3.18)

In the ultracold cases, one finds b2 = 2Λ; in the Nariai case, one has b2 = B. Eigenfunctions

for −D2 (and then also for −D2 +µ2) are tensor products of eigenfunctions of −E2 and of

eigenfunctions of −F 2. As a consequence, degeneracy can be read from the aforementioned

tensor product structure.

In what follows, we define γ̃µ, µ = 0, 1, 2, 3, as the Euclidean version of the usual

gamma matrices which are such that {γ̃µ, γ̃µ} = 2δµ,ν .

In the present case, we obtain the following axpression for E:

/E = γ̃0(∂t − ieEx) + γ̃1∂x, (3.19)

and then

E2 = (∂t − ieEx)2 + ∂2
x + ieEγ̃0γ̃1. (3.20)

The first two terms are meant to be multiplied by 4D identity I4. Being ieEγ̃0γ̃1 =

eEσ2 ⊗ I2, and I4 = I2 ⊗ I2, the eigenvalue equation

−E2ψ = w2ψ (3.21)

is equivalent to the following reduced 2D equation

[

−(∂t − ieEx)2I2 − ∂2
xI2 − eEσ2

]

ξ = w2ξ; (3.22)

a further unitary rotation such that σ2 7→ σ3 carries the problem in a “diagonal” form

(−∂2
x − (∂t − ieEx)2 ∓ eE)η± = w2η±, (3.23)

where η± are components of the 2D vector eigenfunction of the above eigenvalue problem.

Variable separation

η±(t, x) = exp(−iωt)ζ±(x) (3.24)

leads to the following differential equations:

∂2
xζ± +

[

±eE − (ω + eEx)2 + w2
]

ζ± = 0; (3.25)

defining the new variable z = (ω+eEx)√
eE

, we get

d2ζ±(z)

dz2
+

[

±1 +
w2

eE
− z2

]

ζ±(z) = 0, (3.26)
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which is easily realized to be the equation one obtains for the standard simple harmonic

oscillator. The quantization conditions are

2n+ 1 = ±1 − w2

eE
, (3.27)

which lead to

w2
+ = 2neE, (3.28)

w2
− = 2(n + 1)eE, (3.29)

and then one can write

w2 = 2neE, (3.30)

by taking into account that n = 0 has degeneracy which is one half the degeneracy of n > 0

(cf. also the 2D case in [39]).

As a consequence, the eigenvalues for −D2 + µ2 are

λ2 = 2neE + µ2
k, (3.31)

where µ2
k = 2Λk2 + µ2. Notice that the eigenvalues do not depend on ω. An overall

degeneracy factor d must be determined. This can be obtained by comparing the behavior

of the kernel K(x) in x = 0 to the universal coefficients provided by the heat kernel

theorems. We have

K(y) =
∑

k

g(k) exp(−µ2
ky)

[

d

(

2
∞
∑

n=0

exp(−2neEy) − 1

)]

.

The part in square bracket is the heat kernel for the 2D operator −E2, and in the limit as

y → 0 it holds [· · · ] ∼ 2d(2eEy)−1. As it must be equal to 2S(4πy)−1 (see [40], p. 368),

where S is the volume of the 2D space, we get d = eES
2π . We now define

ζ(s) =:
∑

k

g(k)ζk(s), (3.32)

with4

1

2
ζk(s) =

d

Γ(s)

∫ ∞

0
dt ts−1

∞
∑

n=0

exp(−2neEt− µ2
kt) −

1

2

d

Γ(s)

∫ ∞

0
dt ts−1 exp(−µ2

kt)

=
eES

2π

[

(2eE)−sζH

(

s,
µ2
k

2eE

)

− 1

µ2s
k

]

. (3.33)

By putting eE 7→ ieE we finally obtain

Im
1

2
ζ ′k(0) =

eES

2π

[

−1

2
log(2eE) +

πµ2
k

4eE
− 1

2
log(2π) + Re log Γ

(

−i µ
2
k

2eE

)

+
1

2
log(µ2

k)

]

=
eES

2π

[

−1

2
log

(

1 − exp

(

−πµ
2
k

eE

))]

. (3.34)

The volume factor appears here because of integration over the whole spacetime is included.

This result agrees with the previous one.

4We introduce a factor 1
2

in view of (3.15).
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4 The ultracold I case

A second extremal limit of the Nariai background is given by the type I ultracold solution

when r− = r+ = rc. The metric is [15]

ds2 = −χ2dψ2 + dχ2 +
1

2Λ
(dθ2 + sin2(θ)dφ2), (4.1)

with χ ∈ (0,∞) and ψ ∈ R, and the electromagnetic field strength is F =
√

Λχdχ∧dψ. The

spacetime presents the structure of a 2D Rindler manifold times a two dimensional sphere

(with a constant warping factor). One gets Γ0
01 = 1

χ ,Γ
1
00 = χ,Γ2

33 = − sin(θ) cos(θ),Γ3
23 =

cot(θ). We can choose A0 =
√

Λ
2 χ2 and Aj = 0, j = 1, 2, 3 as potential. The situation is

now a little bit more tricky, but we still are able to compare the transmission coefficient

approach with the zeta function method. We expect to find out results which are analogous

to some extent to the ones obtained in [45] for the case of a charged scalar field in a 2D

Rindler spacetime with external electrostatic field.

4.1 The transmission coefficient approach

In [12] we have obtained that variable separation allows to obtain the following reduced

Hamiltonian:

hk =

[

− e
√

Λ
2 χ2 − µχ χ∂χ +

√
2Λkχ

−χ∂χ +
√

2Λkχ − e
√

Λ
2 χ2 + µχ

]

. (4.2)

Again µ, e are the mass and the charge of the fermion. We also introduce E :=
√

Λ.

Using the coordinate t = χ2/2 the Dirac equation takes the (Hamiltonian) form [12]

[

(eEt+ ω)I2 + µ
√

2tσ3 − i2tσ2∂t − 2
√

2Λkσ1

]

ζ = 0.

Rotating to ξ by the σ1 Pauli matrix as before: ζ = e−i
π
4
σ1ξ , we get

[2t∂t + i(eEt + ω)] ξ1 −
(

µ+ i
√

2Λk
)√

2tξ2 = 0,

[2t∂t − i(eEt + ω)] ξ2 −
(

µ− i
√

2Λk
)√

2tξ1 = 0.

This is equivalent to the system

(µ+ i
√

2Λk)
√

2tξ2 = [2t∂t + i(eEt + ω)]ξ1 (4.3)

0 = tξ′′1 +
1

2
ξ′1 −

1

4t
[2tµ2

k − (eEt+ ω)2 − i(eEt− ω)]ξ1. (4.4)

Set ξ1(t) = t−
i
2
ωe−

i
2
eEtF (t). Then, F must satisfy the confluent hypergeometric differential

equation

0 = tF ′′ +

(

1

2
− iω − ieEt

)

F ′ − µ2
k

2
F,

which has general solution in terms of Kummer functions Φ(a; c; z):

F = αΦ

(

µ2
k

2ieE
;
1

2
− iω; ieEt

)

+ βt
1
2
+iωΦ

(

1

2
+ iω +

µ2
k

2ieE
;
3

2
+ iω; ieEt

)

.
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Using the Kummer relation

Φ(a; c; z) = ezΦ(c− a; c;−z)

we get

ξ1(t) = αe−
i
2
eEtt−

i
2
ωΦ

(

µ2
k

2ieE
;
1

2
− iω; ieEt

)

+βe
i
2
eEtt

1
2
+ i

2
ωΦ

(

1 − µ2
k

2ieE
;
3

2
+ iω;−ieEt

)

.

(4.5)

To compute ξ2 we use (4.3) and

Φ′(a; c; z) =
a

c
Φ(a+ 1; c+ 1; z).

We get

ξ2(t) =
ieEα

µ+ i
√

2Ek

µ2
k

ieE (1 − 2iω)
e−

i
2
eEtt−

i
2
ω
√

2tΦ

(

µ2
k

2ieE
+ 1;

3

2
− iω; ieEt

)

− ieEβ

µ+ i
√

2Ek

2ieE − µ2
k

ieE(3 + 2iω)
e

i
2
eEtt

1
2
+ i

2
ω
√

2tΦ

(

2 − µ2
k

2ieE
;
5

2
+ iω;−ieEt

)

+
1 + 2i(ω + eEt)√
2t
(

µ+ i
√

2Ek
)βe

i
2
eEtt

1
2
+ i

2
ωΦ

(

1 − µ2
k

2ieE
;
3

2
+ iω;−ieEt

)

. (4.6)

The asymptotic behaviors of these solutions are, for t ≈ 0

ξ1 ≈ αe−
i
2
eEtt−

i
2
ω, (4.7)

ξ2 ≈
√

2

µ+ i
√

2Ek
β

(

iω +
1

2

)

e
i
2
eEtt

i
2
ω, (4.8)

whereas for t ≈ +∞

ξ1 ≈ e−
i
2
eEtt−

i
2
ω−

µ2

k
2ieE



α (−ieE)
−

µ2

k
2ieE

Γ
(

1

2
− iω

)

Γ
(

1

2
− iω − µ2

k

2ieE

)+β(−ieE)
−

„

1

2
+iω+

µ2

k
2ieE

«

Γ
(

3

2
+ iω

)

Γ
(

1− µ2

k

2ieE

)





(4.9)

ξ2 ≈ e
i
2
eEtt

i
2
ω+

µ2

k
2ieE

√
2

µ+ i
√

2Ek



α(ieE)
µ2

k
2ieE

+iω+ 1

2

Γ
(

1

2
− iω

)

Γ
(

µ2

k

2ieE

) + β(ieE)
µ2

k
2ieE

Γ
(

3

2
+ iω

)

Γ
(

1

2
+ iω +

µ2

k

2ieE

)



 .

(4.10)

It is useful to introduce a new variable x := log(χ). Using group velocity, (4.9) and (4.10)

represent ingoing and outgoing particles respectively at x ≈ ∞. Similarly, (4.7) and (4.8)

are the outgoing and ingoing particle respectively at x ≈ −∞. In this situation, we can

compute the transmission and reflection coefficients. Rewriting (4.7) and (4.8) as

ξ1 ≈ Ae−iφ(x), ξ2 ≈ Beiφ(x)

and (4.9) and (4.10) as

ξ1 ≈ Ce−iφ(x), ξ2 ≈ Deiφ(x),
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with φ(x) =
(

ω +
µ2

k

eE

)

x + 1
2eEe

2x, then we must put C = 0 so that R = A/B and

T = D/B. We get

|Rk(ω)|2 =
e−πω sinh

πµ2
k

2eE

cosh
[

π
(

ω − µ2
k

2eE

)] , (4.11)

|Tk(ω)|2 =
e−

πµ2
k

2eE cosh(πω)

cosh
[

π
(

ω − µ2
k

2eE

)] . (4.12)

As a check we note that |Tk(ω)|2 + |Rk(ω)|2 = 1, and |Tk(ω)|2 gives the mean number of

created pairs per unit time and unit volume.

A comparison with the result obtained in the WKB approximation in [12] is also in

order. We recall that WKB gives for |Tk|2 the same result as in the ultracold II case. Then,

the dependence on ω is missing. We can relate this result with the exact one as follows:

one considers eE fixed and ω → −∞. It is easily seen that the above exact result converges

to the one of the WKB approximation in this limit.

We now calculate the imaginary part of the effective action. We write again

ImW :=
∑

k

g(k)Wk. (4.13)

First of all, we note that there is an important difference with respect to the type II case.

Here, the level-crossing region, i.e. the region where particle and antiparticle states overlap

(cf. e.g. [8]), is no more the whole energy range but, assuming for definiteness eE > 0, is

determined by ω ≤ 0. As pair production is expected to happen only in the level-crossing

region for the case eE > 0, we must calculate

Wk = −1

2

∑

ω

log(1 − |Tk(ω)|2), (4.14)

for ω ≤ 0. We have
∑

ω 7→ T
2π

∫

dω (cf. [44, 45]), where T stays for a finite time interval,

and it is easy to show that

log(1 − |Ti|2) = log

(

1 − exp

(

−πµ
2
k

eE

))

− log

(

1 + exp

(

2πω − πµ2
k

eE

))

. (4.15)

We have to evaluate the integral

∫ 0

−∞
dω log

(

1 + exp

(

2πω − πµ2
k

eE

))

= − 1

2π
Li2

(

− exp

(

−πµ
2
k

eE

))

, (4.16)

and then we get

Wk = −1

2

T
2π

[(
∫ 0

−∞
dω

)

log

(

1 − exp

(

−πµ
2
k

eE

))

+
1

2π
Li2

(

− exp

(

−πµ
2
k

eE

))]

. (4.17)

The factor T
2π

(

∫ 0
−∞ dω

)

amounts to a degeneracy factor which we can evaluate follow-

ing [44]. As explained in the introduction the geometry of the ultracold I manifold is of the
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form of a Cartesian product M1,1 × S2, where the sphere could be considered an internal

space. Thus, this situation can be treated in the same way as in [44] where a 1 + 1 dimen-

sional space time is taken into account. There, it is considered the Klein-Gordon equation

for a complex scalar field in the presence of an E field, but the same reasoning also works

for a Dirac field. In this way we obtain a Schrödinger equation for a particle in an upside

down oscillator potential and we can compute the degeneracy factor counting the number

of modes whose turning points lie within 0 < ψ < T and 0 < χ < L, where T and L are the

sizes of the space time box over which E is nonvanishing. We put TL = S, and then we

obtain for the degeneracy factor the value of eES/2π, exactly the same as we will obtain

by using the ζ-function approach. We underline that (4.17) is in strict analogy with the

results obtained in [45] for the scalar case in a 1+1 Minkowski spacetime, and the terms

appearing in (4.17) allow an analogous interpretation: the first contribution is leading and

is a bulk one, proportional to the spacetime volume of the 2D Rindler part of the manifold,

the latter one is a surface contribution. Cf. also [46].

4.2 The ζ-function approach

The present case is also analyzed by means of ζ-function techniques, which confirm the

results obtained in the former approach.

For the Dirac operator on the (ψ,χ)-part of the manifold one obtains

/E =
1

χ
γ̃0

(

∂ψ − ieE
χ2

2

)

+ γ̃1

(

∂χ +
1

2

1

χ

)

; (4.18)

A Liouville unitary transformation

(SΨ)(ψ,χ) :=
√
χΨ(ψ,χ) (4.19)

(i.e. Ψ(ψ,χ) = 1√
χΦ(ψ,χ)), leads to the unitarily related operator (still called /E)

/E =
1

χ
γ̃0

(

∂ψ − ieE
χ2

2

)

+ γ̃1∂χ , (4.20)

and then

E2 =
1

χ2

(

∂ψ − ieE
χ2

2

)2

+ ∂2
χ + γ̃0γ̃1

(

ieE
1

2
+

1

χ2
∂ψ

)

. (4.21)

Substituting t = χ2

2 , performing variable separation and keeping into account a unitary

“rotation” transformation which is completely analogous to the one performed in the ul-

tracold II case, one obtains for the eigenvalue equation of −E2 the following couple of

ordinary differential equations:

t∂2
t η±(t) +

1

2
∂tη±(t) − 1

4t

[

(ω + eEt)2 ± (ω − eEt) − 2tw2
]

η±(t) = 0. (4.22)

Let us introduce g±(t) through

η±(t) = exp

(

±1

2
eEt

)

t±
1
2
ωg±(t); (4.23)
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then we obtain the following confluent hypergeometric equations:

t
d2g±(t)

dt2
+

[

1

2
± (ω + eEt)

]

dg±(t)

dt
+

1

2
w2g±(t) = 0. (4.24)

We are looking for solutions

(

η+

η−

)

which belong to the Hilbert space L2[(0,∞), dtt ]2

inherited from the original 4D space (the measure keeps into account the above Liouville

transformation). We need to distinguish two regions for the energy ω.

For ω < 0, we find

g(t)− = Φ

(−w2

2eE
;
1

2
− ω; eEt

)

, (4.25)

with the quantization condition
−w2

2eE
= −n, (4.26)

which gives

w2
− = 2eEn. (4.27)

Moreover we find

g(t)+ = t
1
2
−ω exp(−eEt) Φ

(

1 − −w2

2eE
;
3

2
− ω; eEt

)

, (4.28)

with the quantization condition

1 − w2

2eE
= −n, (4.29)

which gives

w2
+ = 2eE(n + 1). (4.30)

Moreover, as in the ultracold II case, we can re-label the eigenvalues in such a way that

the eigenvalues of −/D2 + µ2 in this region are

λ2 = 2eEn + µ2
k, (4.31)

where again µ2
k = µ2 + 2Λk2. Also in this case the degeneracy of the n = 0 case is one half

the degeneracy of the n > 0 cases, in full analogy with the ultracold II case. For the region

ω > 0, solutions

(

η+

η−

)

∈ L2[(0,∞), dtt ]2 correspond to

g−(t) = t
1
2
+ωΦ

(

1

2
+ ω − w2

2eE
;
3

2
+ ω; eEt

)

, (4.32)

and to

g+(t) = exp(−eEt)Φ
(

1

2
+ ω − w2

2eE
;
1

2
+ ω; eEt

)

, (4.33)

which are both associated with the quantization condition

1

2
+ ω − w2

2eE
= −n. (4.34)
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The eigenvalues of −/D2 + µ2 are for ω > 0

λ2 = (2n+ 1)eE + 2eEω + µ2
k. (4.35)

Note that the explicit dependence on ω appears only for the second region. For ω < 0, i.e.

in the level-crossing region, we have independence on ω of the integrand. The degeneracy

factor can be computed as for the ultracold II case giving the same factor. As to the term

depending on ω, with ω > 0, we recall that
∑

ω 7→ T
2π

∫

dω holds. Then we obtain

1

2
ζk(s)=

eES

2π

[

(2eE)−sζH

(

µ2
k

2eE
, s

)

− 1

2

1

µ2s
k

]

+
T
2π

(2eE)−s
1

s−1
ζH

(

1

2

(

1+
µ2
k

eE

)

, s−1

)

.

(4.36)

Note that the first term is the same as for the ultracold II case. Differentiating the second

term with respect to s in s = 0 and going back to the Lorentzian signature we obtain the

contributions

T
2π

[

(log(2ieE) − 1)ζH

(

1

2

[

1 +
µ2
k

ieE

]

,−1

)

+
1

2
log(µ2

k) − ζ ′H

(

1

2

[

1 +
µ2
k

ieE

]

,−1

)]

.

To compute the imaginary part of this expression, we first note that

ζH(a,−1) = −1

2
B2(a) = −1

2

(

a2 − a+
1

6

)

, (4.37)

(B2(a) stays for the second Bernoulli polynomial) so that if a is real

Im ζH

(

1

2
+ ia,−1

)

= 0. (4.38)

Then, the first term gives the contribution

1

8π

[

1

2

(

πµ2
k

eE

)2

+
π2

6

]

. (4.39)

To compute the second term, let us start from the obvious identity

ζH(a; z) =
1

2z
ζH

(a

2
; z
)

+
1

2z
ζH

(

a

2
+

1

2
; z

)

. (4.40)

Deriving in z = −1 and choosing a = ix we get

ζ ′H

(

i
x

2
+

1

2
;−1

)

=
1

2
ζ ′H(ix;−1) − ζ ′H

(

i
x

2
;−1

)

+
1

2
log 2ζH(ix;−1). (4.41)

Using Im ζH(ix;−1) = x
2 and formula (20) in [42] we get

Im ζ ′H

(

i
x

2
+

1

2
;−1

)

=
1

8π

[

−π
2

6
− 1

2
(xπ)2 −

∞
∑

n=1

e−2nπx

n2
+ 2

∞
∑

n=1

e−nπx

n2

]

=
1

8π

[

−π
2

6
− 1

2
(xπ)2 − 2

∞
∑

n=1

(−1)n
e−nπx

n2

]

. (4.42)
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Using the expression
∞
∑

n=1

(−1)n
e−nπx

n2
= Li2(−e−πx), (4.43)

and adding (4.39) and the derivative of the first term in (4.36), we finally get

1

2
Im ζ ′k(0) =

eES

2π

[

−1

2
log

(

1 − exp

(

−πµ
2
k

eE

))]

− T
2π

1

4π
Li2

(

− exp

(

−πµ
2
k

eE

))

. (4.44)

This result coincides with (4.17). It is remarkable that the transmission coefficient approach

involves only an integral over the level-crossing region, whereas the ζ-function calculation

requires a control over the whole spectrum, and is quite more tricky, but it provides also

more information, being a priori the complete 1-loop effective action made available by the

latter approach.

4.3 Instability of the thermal state

According to the general discussion of section 2, we get

< Nout
l >βh

=
1

1+exp[2π(ω − ϕ+)]
+

e−
πµ2

k
2eE cosh(πω)

cosh
[

π
(

ω − µ2

k

2eE

)]

1

2

(

tanh[π(ω − ϕ+)]+tanh[π(|ω| + ϕ−)]
)

,

(4.45)

where the latter term is the net effect associated with the pair production induced by the

presence of an electrostatic field. Notice however that the potential ϕ+ = ϕ− is ill-defined,

being infinite unless a spatial cut-off is introduced at χ = χ0 > 0.

5 Nariai case

We now consider the more general case, that is the electrically charged Nariai solution.

The manifold is described by the metric [13–15]

ds2 =
1

A
(− sin2(χ)dψ2 + dχ2) +

1

B
(dθ2 + sin2(θ)dφ2) (5.1)

with ψ ∈ R, χ ∈ (0, π), and the constants B = 1
2Q2

(

1 −
√

1 − 12Q
2

L2

)

, A = 6
L2 − B

are such that A
B < 1, and L2 := 3

Λ . The black hole horizon occurs at χ = π. This

manifold differs from the ultracold cases because it has finite spatial section. In the Eu-

clidean version, it corresponds to two spheres characterized by different radii. One finds

the following non-vanishing Christoffel symbols Γ0
01 = cot(χ),Γ1

00 = sin(χ) cos(χ),Γ2
33 =

− sin(θ) cos(θ),Γ3
23 = cot(θ). For the gauge potential we can choose Ai = −QB

A cos(χ)δ0i .

As the situation is more difficult, in this section we will provide a more detailed expo-

sition.
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5.1 The transmission coefficient approach

By variable separation, as performed in [12], we obtain the following reduced Hamiltonian

(where µ, e are the fermion mass and charge, as before):

hk =





eQB
A cos(χ) − µ√

A
sin(χ) sin(χ)∂χ +

√

B
A sin(χ)k

− sin(χ)∂χ +
√

B
A sin(χ)k eQB

A cos(χ) + µ√
A

sin(χ)



 . (5.2)

We introduce, with the aim of simplifying the notation, the following definition:

E := Q
B

A
, (5.3)

which corresponds to 1
A times the maximum value for the intensity of the electrostatic field.

Moreover, we assume for definiteness eE > 0, and also we adopt the following redefinitions:

1√
A
µ 7→ µ,

√

B

A
k 7→ k. (5.4)

Then the Dirac equation in the Hamiltonian form is

(

eE cosχ− µ sinχ sinχ∂χ + k sinχ

− sinχ∂χ + k sinχ eE cosχ+ µ sinχ

)(

ψ1

ψ2

)

= ω

(

ψ1

ψ2

)

.

Using the coordinate t = − cosχ we can write it in the form
[

(eEt+ ω)I2 + µ
√

1 − t2σ3 − i(1 − t2)σ2∂t − k
√

1 − t2σ1

]

Ψ = 0, (5.5)

where Ψ =
(

ψ1

ψ2

)

. Let us take the unitary transformation Ψ = e−i
π
4
σ1ξ; then

[

(1 − t2)∂t + i(eEt + ω)
]

ξ1 − (µ+ ik)
√

1 − t2ξ2 = 0, (5.6)
[

(1 − t2)∂t − i(eEt + ω)
]

ξ2 − (µ− ik)
√

1 − t2ξ1 = 0. (5.7)

From (5.6) we find

(µ+ ik)ξ2 =
√

1 − t2ξ′1 + i
eEt+ ω√

1 − t2
ξ1, (5.8)

which inserted into (5.7) gives

(1 − t2)ξ′′1 − tξ′1 − (µ2 + k2 − ieE)ξ1 +
1

1 − t2
[(eEt+ ω)2 + i(eEt+ ω)t]ξ1 = 0. (5.9)

Looking at the behavior of this equation at the singular points t = ±1 we see that it is

convenient to define a function ζ such that

ξ1(t) = (1 − t)α(1 + t)βζ((1 + t)/2), (5.10)

α ∈
{

1

2
(1 − ieE − iω),

i

2
(eE + ω)

}

, β ∈
{

1

2
(1− ieE+ iω),

i

2
(eE− ω)

}

. (5.11)
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Setting z = (1 + t)/2 and choosing α = i
2(eE + ω) and β = i

2(eE − ω), we find

z(1 − z)ζ ′′ +

[

2β +
1

2
− z(1 + 2ieE)

]

ζ ′ − [µ2 + k2]ζ = 0, (5.12)

which is an hypergeometric differential equation. Note that the solution regular in z = 0

of this equation provides a solution of (5.9) regular in t = −1. Moreover, (5.9) is invariant

under the combination of complex conjugation with the transformation (t, E) → (−t,−E).

Thus, we are able to get the solution regular in t = 1 applying this transformation to the

solution regular in t = −1. This gives

ξ1(t) = c1

(

1−t
2

)i eE+ω
2
(

1+t

2

)i eE−ω
2

2F1

(

ieE + i
√

∆, ieE − i
√

∆;
1

2
+ i(eE − ω);

1+t

2

)

+c2

(

1−t
2

)i eE+ω
2
(

1+t

2

)i eE−ω
2

2F1

(

ieE+i
√

∆, ieE − i
√

∆;
1

2
+i(eE + ω);

1−t
2

)

,

(5.13)

where ∆ := µ2 + k2 + e2E2, and 2F1 is the well-known Gauss hypergeometric function.

Using (5.8) and the relations

−
√

1−t2 d
dt

[

(

1−t
2

)i eE+ω
2
(

1+t

2

)i eE−ω
2

]

− i
eEt+ω√

1−t2

[

(

1−t
2

)i eE+ω
2
(

1+t

2

)i eE−ω
2

]

= 0

2F
′
1(a, b; c; z) =

ab

c
2F1(a+ 1, b+ 1; c + 1; z),

we get

ξ2(t) = c1
2(µ− ik)

1 + 2i(eE − ω)

(

1 − t

2

)i eE+ω
2

+ 1
2
(

1 + t

2

)i eE−ω
2

+ 1
2

2F1

(

ieE + i
√

∆ + 1, ieE − i
√

∆ + 1;
3

2
+ i(eE − ω);

1 + t

2

)

−c2
2(µ− ik)

1 + 2i(eE + ω)

(

1 − t

2

)i eE+ω
2

+ 1
2
(

1 + t

2

)i eE−ω
2

+ 1
2

2F1

(

ieE + i
√

∆ + 1, ieE − i
√

∆ + 1;
3

2
+ i(eE + ω);

1 − t

2

)

. (5.14)

As in the previous cases, we can look at the asymptotic behaviors at infinities, in the

coordinate x = log tan χ
2 . For x→ −∞ we get

ξ1(x) ≈



c1+c2
Γ
(

1
2 +i(eE + ω)

)

Γ
(

1
2−i(eE−ω)

)

Γ
(

1
2 +iω−i

√
∆
)

Γ
(

1
2 + iω + i

√
∆
)



 ei(eE−ω)x + e−i(eE−ω)xO(ex), (5.15)

ξ2(x) ≈ −c2
2(µ− ik)

1+2i(eE + ω)

Γ
(

3
2 +i(eE+ω)

)

Γ
(

1
2 +i(eE−ω)

)

Γ(1+ieE−i
√

∆)Γ(1+ieE+i
√

∆)
e−i(eE−ω)x + ei(eE−ω)xO(ex).

(5.16)
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For x→ +∞:

ξ1(x) ≈



c2+c1
Γ
(

1
2 +i(eE−ω)

)

Γ
(

1
2−i(eE+ω)

)

Γ
(

1
2−iω−i

√
∆
)

Γ
(

1
2−iω+i

√
∆
)



 e−i(eE+ω)x+ei(eE+ω)xO(e−x), (5.17)

ξ2(x) ≈ c1
2(µ− ik)

1+2i(eE−ω)

Γ
(

3
2 +i(eE − ω)

)

Γ
(

1
2 +i(eE + ω)

)

Γ
(

1+ieE−i
√

∆
)

Γ
(

1+ieE+i
√

∆
)ei(eE+ω)x+e−i(eE+ω)xO(e−x).

(5.18)

To compute the transmission and reflection coefficient let us write the asymptotic expres-

sions for ξ as

ξ1(x)
− ≈ [c1 + c2α0] e

i(eE−ω)x + e−i(eE−ω)xO(ex), (5.19)

ξ2(x)
− ≈ −c2 β0e

−i(eE−ω)x + ei(eE−ω)xO(ex), (5.20)

for x→ −∞, and for x→ ∞

ξ1(x)
+ ≈ [c2 + c1α1] e

−i(eE+ω)x + ei(eE+ω)xO(e−x), (5.21)

ξ2(x)
+ ≈ c1 β1e

i(eE+ω)x + e−i(eE+ω)xO(e−x). (5.22)

By taking into account correctly group velocity and imposing that there is only incoming

wave at x = −∞, one finds

|Tk(ω)|2 =
cosh[π(eE − ω)] cosh[π(eE + ω)]

cosh
[

π
(√

∆ − ω
)]

cosh
[

π
(√

∆ + ω
)]

=
cosh[2πeE] + cosh[2πω]

cosh
[

2π
√

∆
]

+ cosh[2πω]
, (5.23)

which has the expected property to satisfy |T |2 < 1 and gives the mean number of created

pairs for unit time and unit volume. Moreover, we get

|Rk(ω)|2 =
sinh

[

π
(√

∆ − eE
)]

sinh
[

π
(√

∆ + eE
)]

cosh
[

π
(√

∆ − ω
)]

cosh
[

π
(√

∆ + ω
)] , (5.24)

and the property |Tk(ω)|2 + |Rk(ω)|2 = 1 is verified. We recall that one has to reinstate

in the above formulas for |Tk|2 the original values for µ and k (cf. eq. (5.4)). Then ∆ =
µ2

A + B
Ak

2 + (eE)2.

Comparing with [12], the limit as eE → ∞ leads to the WKB approximation (and to

the limit |Tk(ω)|2 → 1−). This is the actual approximation where the WKB approximation

works well. We can notice that the above limit actually means QB
A → ∞. Being

B

A
=

1
√

1 − 4ΛQ2
, (5.25)

one can obtain the above limit as Q2 →
(

1
4Λ

)−
.
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In order to determine the imaginary part of the effective action, we refer again to (4.13).

We do not perform the sum over k, and then we calculate

Wk = −1

2

∑

ω

log(1 − |Tk(ω)|2). (5.26)

We sum only over the level-crossing region, because only there particle creation is expected

to be present, and then only there an instability for the vacuum should occur. This region

is −eE ≤ ω ≤ eE so that we have to perform the following integral:

I :=

∫ eE

−eE
dω log



1 − cosh[2πeE] + cosh[2πω]

cosh
[

2π
√

∆
]

+ cosh[2πω]



 , (5.27)

where the dependence on k is implicit in ∆; the integral can be rewritten as follows:

I = 2eE log
(

cosh
[

2π
√

∆
]

− cosh[2πeE]
)

− II, (5.28)

where

II :=

∫ eE

−eE
dω log(cosh

[

2π
√

∆
]

+ cosh[2πω]) =
1

2π

∫ 2πeE

−2πeE
dy log(p+ cosh[y]), (5.29)

with p := cosh
[

2π
√

∆
]

. By taking into account that p + cosh[y] =
1
2 (2p + exp(y) + exp(−y)) = 1

2 exp(y)(exp(−2y) + 2p exp(−y) + 1) =
1
2 exp(y)

(

exp(−y) + p−
√

p2 − 1
)(

exp(−y) + p+
√

p2 − 1
)

and that p −
√

p2 − 1 =

exp
(

−2π
√

∆
)

and p+
√

p2 − 1 = exp
(

2π
√

∆
)

, one finds

II =
1

2π

∫ 2πeE

−2πeE

dy
[

y−log 2+log
(

exp(−y) exp
(

−2π
√

∆
)

+1
)

+log
(

exp(−y) exp
(

2π
√

∆
)

+1
)]

.

(5.30)

The following result is useful:
∫

dy log(exp(−y + δ) + 1) =
1

2
y2 + y log(exp(−y + δ) + 1) − y log(exp(y − δ) + 1)

−Li2(− exp(y − δ))

= −1

2
y2 + yδ − Li2(− exp(y − δ)). (5.31)

As a consequence, with simple manipulations, we get

II =
1

2π

[

−2(2πeE) log 2+Li2

(

− exp
[

−2π
(√

∆+eE
)])

− Li2

(

− exp
[

2π
(√

∆+eE
)])

+ Li2

(

− exp
[

2π
(√

∆ − eE
)])

− Li2

(

− exp
[

−2π
(√

∆ − eE
)])]

, (5.32)

and then, by taking into account that
∑

ω 7→ T
2π

∫

dω, we get

Wk = − T
2π
eE log

(

2 cosh
[

2π
√

∆
]

− 2 cosh [2πeE]
)

− T
2π

1

4π

[

−Li2

(

− exp
[

−2π
(√

∆ + eE
)])

+ Li2

(

− exp
[

2π
(√

∆ + eE
)])

−Li2

(

− exp
[

2π
(√

∆−eE
)])

+ Li2

(

− exp
[

−2π
(√

∆−eE
)])]

. (5.33)
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In the Nariai case, it is not so straightforward to distinguish between bulk and surface

parts of the given Wk. By keeping into account that E ∝ 1
A and that the volume of the

(Euclidean) 2D (ψ,χ)-part of the metric is 4π
A , one realizes that the first above contribution

is leading and is a bulk one and the latter is again a surface contribution.

5.2 The ζ-function approach

This case requires more efforts in order to be tackled with ζ−function techniques, in par-

ticular it needs techniques which have been developed only recently [20], and we sketch

herein a more heuristic approach which still leads to the desired results.

As to the operator /E on the (ψ,χ)-part of the manifold, one obtains

/E =

√
A

sinχ
γ̃0 (∂ψ + ieE cosχ) +

√
Aγ̃1

(

∂χ +
1

2
cotχ

)

. (5.34)

After a Liouville unitary transformation Ψ(ψ,χ) = 1√
sinχ

φ(ψ,χ), we get the simplified

form (again called /E)

/E =

√
A

sinχ
γ̃0 (∂ψ + ieE cosχ) +

√
Aγ̃1∂χ; (5.35)

moreover,

E2 =
A

sin2 χ
(∂ψ + ieE cosχ)2 +A∂2

χ +Aγ̃0γ̃1

(

cosχ

sin2 χ
(∂ψ + ieE cosχ) + ieE

)

. (5.36)

Substituting t = − cosχ one obtains

E2 =
A

1 − t2
(∂ψ − ieEt)2 +A(1 − t2)∂2

t −At∂t +Aγ̃0γ̃1

(

− t

1 − t2
(∂ψ − ieEt) + ieE

)

.

(5.37)

After variable separation, a reduction and a rotation as in the previous cases, we obtain

for the eigenvalue problem of −E2 the following couple of differential equations:

(1− t2)∂2
t η± − t∂tη± ± eEη± +

1

1 − t2
[

−(ω + eEt)2 ± t(ω + eEt)
]

η± +
w2

A
η± = 0. (5.38)

We choose

η+(t) = (1 − t)
eE+ω

2 (1 + t)
eE−ω

2 g+(t), (5.39)

η−(t) = (1 − t)
−eE−ω

2 (1 + t)
−eE+ω

2 g−(t). (5.40)

Then by choosing t = 2z − 1 we obtain the following couple of hypergeometric equations:

z(1 − z)
d2g+(z)

dz2
+

(

eE − ω +
1

2
− (2eE + 1)z

)

dg+(z)

dz
+
w2

A
g+(z) = 0, (5.41)

with a+ = eE +
√

w2

A + (eE)2, b+ = eE −
√

w2

A + (eE)2, c+ = eE − ω + 1
2 , and

z(1 − z)
d2g−(z)

dz2
+

(

−eE + ω +
1

2
+ (2eE − 1)z

)

dg−(z)

dz
+
w2

A
g−(z) = 0, (5.42)
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with a− = −eE +
√

w2

A + (eE)2, b− = −eE −
√

w2

A + (eE)2, c− = −eE + ω + 1
2 . We are

looking for solutions

(

η+

η−

)

∈ L2
[

(0, 1), dz
z(1−z)

]2
. It is not difficult to realize that this

condition depends on ω, and three regions can be identified. One can show that

g+(z) = 2F1(a+, b+; c+; z) (5.43)

with the quantization condition

b+ = −n, (5.44)

which leads to

w2
+ = A(eE + n)2 −A(eE)2, (5.45)

together with

g−(z) = z1−c−(1 − z)c−−(a−+b−)
2F1(1 − a−, 1 − b−; 2 − c−; z) (5.46)

with the quantization condition

1 − a− = −n, (5.47)

which leads to

w2
− = A(eE + n+ 1)2 −A(eE)2, (5.48)

correspond to solutions of (5.41), (5.42) respectively which allow to get

(

η+

η−

)

∈

L2
[

(0, 1), dz
z(1−z)

]2
in the interval −eE < ω < eE. We can re-label the eigenvalue and

obtain for −D2 + µ2

λ2 = A(eE + n)2 −A(eE)2 + µ2 +Bk2. (5.49)

Also in this case, one has to take into account that degeneracy for n = 0 is one half the

degeneracy for n > 0.

In the region ω > eE one can show that the couple

g+(z) = z1−c+
2F1(a+ − c+ + 1, b+ − c+ + 1; 2 − c+; z) (5.50)

and

g−(z) = (1 − z)c−−(a−+b−)
2F1(c− − a−, c− − b−; c−; z) (5.51)

under the quantization conditions b+− c+ +1 = −n and c−−a− = −n, which both lead to

w2 = A

(

ω +
1

2
+ n

)2

−A(eE)2 (5.52)

provides a solution which is in L2
[

(0, 1), dz
z(1−z)

]2
. Then the eigenvalue of −D2+µ2 becomes

λ2 = A

(

ω + n+
1

2

)2

−A(eE)2 + µ2 +Bk2. (5.53)
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There is still the region ω < −eE to be explored, where

g+(z) = (1 − z)c+−(a++b+)
2F1(c+ − b+, c+ − a+; c+ − (a+ + b+) + 1; 1 − z), (5.54)

and

g−(z) = z1−c−
2F1(1 + b− − c−, 1 + a− − c−; a− + b− + 1 − c−; 1 − z) (5.55)

with the quantization conditions c+ − a+ = −n and 1 + b− − c− = −n, which both

correspond to

w2 = A

(

−ω +
1

2
+ n

)2

−A(eE)2, (5.56)

satisfy the property to be eigenfunctions of the operator −E2. The eigenvalues of

−D2 + µ2 are

λ2 = A

(

−ω + n+
1

2

)2

−A(eE)2 + µ2 +Bk2. (5.57)

Note that, for |ω| > eE the eigenvalues of −D2 + µ2 can be written as follows:

λ2 = A

(

|ω| + n+
1

2

)2

+ µ2 +Bk2 −A(eE)2, (5.58)

and then the integration for |ω| > eE is symmetric.

For the heat kernel we get

K(s) =
∑

k

g(k)Kk(s), (5.59)

with

Kk(s) = 2
T
2π

{

2

∫ ∞

eE
dω

∞
∑

n=0

exp

[

−A
(

(

ω +
1

2
+ n

)2

+
µ2
k

A
− (eE)2

)

s

]

+ 2eE

∞
∑

n=0

exp

[

−A
(

(eE + n)2 +
µ2
k

A
− (eE)2

)

s

]

− eE exp
(

−µ2
ks
)

}

, (5.60)

where µ2
k = µ2 +Bk2. Correspondingly, we obtain

1

2
ζk(s) =

T
2π



2

∫ ∞

eE

∑

n

dω

As
[

(

n+ 1
2 + ω

)2
+

µ2
k

A − (eE)2
]s+

+ (2eE)





∑

n

1

As
[

(n+ eE)2 +
µ2

k

A − (eE)2
]s −

1

2

1

µ2s
k







 . (5.61)

It is convenient to introduce the functions

σk(s; z) :=
∑

n

1

As
[

(

n+ 1
2 + eE + z

)2
+

µ2
k

A − (eE)2
]s , (5.62)
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so that
1

2
ζk(s) =

T
2π

[

2eE

(

σk

(

s;−1

2

)

− 1

2

1

µ2s
k

)

+ 2

∫ ∞

0
σk(s; z)dz

]

. (5.63)

It is also useful to define α = 1
2 + eE and β2 =

µ2
k

A − (eE)2. Using the Abel-Plana formula5

we get

σk(s; z) =
1

2

1

As
[

(α+ z)2 + β2
]s +

∫ ∞

0

dx

As
[

(x+ α+ z)2 + β2
]s (5.64)

+ i

∫ ∞

0
dx







1

As
[

(ix+ α+ z)2 + β2
]s − 1

As
[

(−ix+ α+ z)2 + β2
]s







1

e2πx − 1
.

To compute the effective action, we need to compute the derivative of σk(s; z) with respect

to s, in s = 0. For the last term of (5.64) we get

− i

∫ ∞

0
dx
{

ln
[

(ix+ α+ z)2 + β2
]

− ln
[

(−ix+ α+ z)2 + β2
]} 1

e2πx − 1
. (5.65)

Note that this coincides with

i
d

ds

∣

∣

∣

∣

s=0

∫ ∞

0
dx

1

Aγs

{

1

(ix+ α+ z + iβ)s
− 1

(−ix+ α+ z + iβ)s

+
1

(ix+ α+ z − iβ)s
− 1

(−ix+ α+ z − iβ)s

}

1

e2πx − 1
, (5.66)

where γ is an arbitrary constant. The result does not depend on γ and we could choose it

equal to 0. However, it is convenient to choose γ = 1
2 . Applying Plana’s formula to this

integrals we see that
∂

∂s

∣

∣

∣

∣

s=0

σk(s; z) =
∂

∂s

∣

∣

∣

∣

s=0

σ̃k(s; z), (5.67)

where

σ̃k(s; z) =
1

2

1

As
[

(α+ z)2 + β2
]s +

∫ ∞

0

dx

As
[

(x+ α+ z)2 + β2
]s

+
1

As/2

∞
∑

n=0

{

1

(n+ α+ z + iβ)s
+

1

(n+ α+ z − iβ)s

}

−1

2

1

As/2

{

1

(α+ z + iβ)s
+

1

(α+ z − iβ)s

}

− 1

As/2

∫ ∞

0
dx

{

1

(x+ α+ z + iβ)s
+

1

(x+ α+ z − iβ)s

}

. (5.68)

We now note that, thanks to our choice for γ, collecting the second and the last terms

under the integral and deriving with respect to s in s = 0 we obtain a vanishing term (see

5Abel-Plana formula is:
P

∞

n=0 f(n) = 1
2
f(0) +

R

∞

0
f(x)dx + i

R

∞

0
f(ix)−f(−ix)

e2πx−1
.
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Lemma 1 in [20]). The same happens for the first and the fourth term so that only the

third term contribute to the derivative. Our conclusion is that

∂

∂s

∣

∣

∣

∣

s=0

σk(s; z) =
∂

∂s

∣

∣

∣

∣

s=0

[

1

As/2
(ζH(α+ z + iβ, s) + ζH(α+ z − iβ, s))

]

. (5.69)

Using (5.63) we conclude that

∂

∂s

∣

∣

∣

∣

s=0

ζk(s) =
∂

∂s

∣

∣

∣

∣

s=0

ζ̂k(s), (5.70)

where
1

2
ζ̂k(s) :=

T
2π

[

2eE

(

σ̂k

(

s;−1

2

)

− 1

2

1

µ2s
k

)

+ 2

∫ ∞

0
σ̂k(s; z)dz

]

, (5.71)

with

σ̂k(s; z) =
1

As/2
(ζH(α+ z + iβ, s) + ζH(α+ z − iβ, s)). (5.72)

Thus

1

2
ζ̂k(s) =

T
2π

{

2eE
1

A
s
2

[

ζH

(

α− 1

2
+ iβ, s

)

+ ζH

(

α− 1

2
− iβ, s

)]

− eE
1

µ2s
k

+ 2
1

A
s
2

1

s− 1
[ζH(α+ iβ, s− 1) + ζH(α− iβ, s − 1)]

}

. (5.73)

Then we get (we momentarily omit the index k from some formulas below)

1

2
ζ ′(0) =

T
2π

{

2(eE)2 logA− eE logA+ 2eE log
Γ(eE + iβ)Γ(eE − iβ)

2π
+ eE log(µ2

k) + (2 + logA) [ζH(α+ iβ,−1) + ζH(α− iβ,−1)]

−2
[

ζ ′H(α+ iβ,−1) + ζ ′H(α− iβ,−1)
]

}

, (5.74)

where we used the well known relations

ζH(a, 0) =
1

2
− a, ζ ′H(a, 0) = log

Γ(a)√
2π
. (5.75)

By going back to Lorentzian signature, through eE 7→ ieE, we get

1

2
Im ζ ′(0) =

T
2π

[

−eE logA−eE log(∆−(eE)2)−eE log
(

2 cosh
[

2π
√

∆
]

− 2 cosh[2πeE]
)

+ eE log(µ2
k) − 2 Im

[

ζ ′H(α+ iβ,−1) + ζ ′H(α− iβ,−1)
]

]

. (5.76)

To compute the last two terms we can start from (4.42) and use the identity

− 1

2
log2(−z) − π2

6
= Li2(z) + Li2(1/z), (5.77)

to obtain the relation

Im ζ ′H

(

i
x

2
+

1

2
;−1

)

=
1

8π

[

Li2(−eπx) − Li2(−e−πx)
]

, (5.78)
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and then

1

2
Im ζ ′k(0) =

T
2π

{

−eE log
(

2 cosh
[

2π
√

∆
]

− 2 cosh[2πeE]
)

(5.79)

− 1

4π

[

−Li2

(

− exp
[

−2π
(√

∆ + eE
)])

+ Li2

(

− exp
[

2π
(√

∆ + eE
)])

−Li2

(

− exp
[

2π
(√

∆ − eE
)])

+ Li2

(

− exp
[

−2π
(√

∆ − eE
)])]}

.

Also in the Nariai case, the result coincides with the one obtained in the transmission

coefficient approach. The calculation in the ζ-function approach is much more difficult

than the one in the transmission coefficient approach. Still, it furnishes the complete

1-loop effective action, and not simply its imaginary part.

5.3 Instability of the thermal state

Also in this case, according to the general discussion of section 2, we get

< Nout
l >βh

=
1

1 + exp[2π(ω − ϕ+)]
(5.80)

+
cosh[2πeE] + cosh[2πω]

cosh
[

2π
√

∆
]

+ cosh[2πω]

1

2

(

tanh[π(ω − ϕ+)] + tanh[π(|ω| + ϕ−)]
)

,

with ϕ+ = 2eE = ϕ−. Thermality of the state affects the pair production induced by

the presence of an electrostatic field, which is associated with the second term in (5.80).

We recall that in terms of physical (dimensionful) variables, by taking into account that

Th = ~c
√
A

2πkb
, and that ωphys =

√
Aω, in such a way that βphysωphys = 2πω.

6 Conclusions

We have studied the spontaneous emission of charged Dirac particles by three special dS

black hole solutions which share the relevant property to allow exact calculations and to

present spherosymmetric metrics with a two-dimensional spherical part completely factor-

ized (with at most a constant warping factor). As a consequence of the latter feature, the

problem allows a reduction á la Kaluza-Klein to a two dimensional effective theory. This

fact reflects itself in the common structure of our results in the ζ-function approach as

well as in the transmission coefficient approach, with the 4D imaginary part of the effec-

tive action appearing as a sum over K-K modes of 2D terms. As to vacuum instability,

our double check by the aforementioned approaches leads to identical results. Analogous

results occur in the case of scalar fields on the same backgrounds [47]. Moreover, both

the ultracold I case and the Nariai case make evident that calculations of the imaginary

part of the effective action are easier in the transmission coefficient approach; still, it is

to be pointed out that, a priori, the ζ-function approach furnishes the complete 1-loop

effective action (and then also vacuum polarization effects are taken into account [39]),

and not only an evaluation of the vacuum instability (which is the only outcome of the

transmission coefficient approach). It is also remarkable that the analysis of ultracold I

and the Nariai cases points out that different regions in ω must be taken into account in
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the two approaches: in the transmission coefficient approach, only the level-crossing region

is involved, instead in the ζ-function approach the whole spectrum must be included.

As expected, the presence of an electrostatic field associated with the black hole charge

induces a non-zero imaginary part of the effective action, i.e. to a vacuum instability which

gives rise to the emission of charged pairs by the black hole, with a consequent discharge.

The ultracold II case is to some extent trivial, because it substantially reduces to the

instability of the vacuum in a 2D Minkowski space with an homogeneous electrostatic field.

This fact appears clearly by comparing our results e.g. with the ones for the 2D case in [41].

Nevertheless, the results obtained are meaningful, as we deal with the instability of a black

hole with zero temperature.

The ultracold I case presents a less trivial structure, a non-homogeneous electrostatic

field coupled with a Rindler-like horizon, and a non-zero temperature. Instability of the

Boulware-like vacuum has been shown, and moreover also the instability of the Hartle-

Hawking thermal state has been displayed; general calculations carried out in section 2

show that the transmission coefficient which signals vacuum instability still plays a relevant

role for a thermal state at finite temperature, and Thermofield Dynamics is in agreement

with the results in [32].

The Nariai case is the most interesting one and also the most difficult, because it repre-

sents a charged black hole characterized by a finite spatial section and with an electrostatic

field which reach a maximum between the black hole horizon and the cosmological event

horizon (where it vanishes), and then in this respect it is really different from Reissner-

Nordström black holes (where the electrostatic field is mostly intense at the black hole

horizon). Instability is again shown to occur.

For the given manifolds, a comparison between the exact results for the transmission

coefficient and the WKB approximation ones obtained in [12] has also been performed,

and, as expected, we have found that WKB is exact in the ultracold II case.
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[21] E. Brézin and C. Itzykson, Pair production in vacuum by an alternating field,

Phys. Rev. D 2 (1970) 1191 [SPIRES].

[22] C. Itzykson and J.-B. Zuber, Quantum field theory, McGraw Hill, New York U.S.A. (1980)

[SPIRES]

[23] A.I. Nikishov, Pair production by a constant external field, Sov. Phys. JETP 30 (1970) 660.

[24] N.B. Narozhnyi and A.I. Nikishov, The Simplest processes in the pair creating electric field,

Yad. Fiz. 11 (1970) 1072 [Sov. J. Nucl. Phys. 11 (1970) 596] [SPIRES].

– 31 –

http://dx.doi.org/10.1103/PhysRevD.75.045013
http://arxiv.org/abs/hep-th/0701047
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,D75,045013
http://dx.doi.org/10.1393/ncb/i2005-10148-6
http://arxiv.org/abs/gr-qc/0401057
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUCIA,B120,1193
http://dx.doi.org/10.1103/PhysRevD.78.105013
http://arxiv.org/abs/0807.2696
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0807.2696
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,52B,437
http://dx.doi.org/10.1088/0264-9381/25/10/105013
http://arxiv.org/abs/0710.2014
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD,25,105013
http://dx.doi.org/10.1103/PhysRevD.79.124024
http://arxiv.org/abs/0810.1642
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0810.1642
http://dx.doi.org/10.1016/0550-3213(92)90684-4
http://arxiv.org/abs/hep-th/9203018
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9203018
http://dx.doi.org/10.1103/PhysRevD.60.063503
http://arxiv.org/abs/hep-th/9902183
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9902183
http://dx.doi.org/10.1103/PhysRevD.52.2254
http://arxiv.org/abs/gr-qc/9504015
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=GR-QC/9504015
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=SPWPA,1921,966
http://dx.doi.org/10.1007/BF01397481
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=ZEPYA,37,895
http://dx.doi.org/10.1016/0370-1573(86)90163-8
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC,130,1
http://arxiv.org/abs/0902.3190
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0902.3190
http://dx.doi.org/10.1103/PhysRevD.2.1191
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,D2,1191
http://www.slac.stanford.edu/spires/find/hep/www?irn=787043
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=SJNCA,11,596


J
H
E
P
0
8
(
2
0
0
9
)
0
2
8

[25] S.P. Gavrilov, D.M. Gitman and J.L. Tomazelli, Density matrix of a quantum field in a

particle-creating background, Nucl. Phys. B 795 (2008) 645 [hep-th/0612064] [SPIRES].

[26] W. Israel, Thermo field dynamics of black holes, Phys. Lett. A 57 (1976) 107 [SPIRES].

[27] W.G. Unruh, Notes on black hole evaporation, Phys. Rev. D 14 (1976) 870 [SPIRES].

[28] Y. Takahashi and H. Umezawa, Thermo field dynamics, Collective Phenomena 2 (1975) 55.

[29] H. Umezawa, H. Matsumoto and M. Tachiki, Thermo field dynamics and condensed states,

North-Holland Publishing Company, Amsterdam The Netherlands (1982).

[30] H. Umezawa, Advanced field theory. Micro, macro, and thermal physics, American Institute

of Physics, New York U.S.A. (1993).

[31] U. Moschella and R. Schaeffer, A note on canonical quantization of fields on a manifold,

JCAP 02 (2009) 033 [arXiv:0802.2447] [SPIRES].

[32] S.P. Kim, H.K. Lee and Y. Yoon, Schwinger pair production at finite temperature in QED,

Phys. Rev. D 79 (2009) 045024 [arXiv:0811.0349] [SPIRES].

[33] S.P. Kim and H.K. Lee, Schwinger pair production at finite temperature in scalar QED,

Phys. Rev. D 76 (2007) 125002 [arXiv:0706.2216] [SPIRES].

[34] S.P. Gavrilov and D.M. Gitman, Energy-momentum tensor in thermal strong-field QED with

unstable vacuum, J. Phys. A 41 (2008) 164046 [arXiv:0710.3933] [SPIRES].

[35] A. Das, Finite temperature field theory, World Scientific Publishing Company, Singapore

Republic of Singapore (1997).

[36] F.C. Khanna, A.P.C. Malbouisson, J.M.C. Malbouisson, and A.E. Santana, Thermal

quantum field theory, World Scientific Publishing Company, Singapore Republic of Singapore

(2009).

[37] D.N. Page, Particle emission rates from a black hole. 3. Charged leptons from a nonrotating

hole, Phys. Rev. D 16 (1977) 2402 [SPIRES].

[38] M. Abramowitz and I.A. Stegun, Handbook of mathematical functions with formulas, graphs

and mathematical tables, Dover Publications Inc., New York U.S.A. (1965).

[39] S.K. Blau, M. Visser and A. Wipf, Analytical results for the effective action,

Int. J. Mod. Phys. A 6 (1991) 5409 [arXiv:0906.2851] [SPIRES].

[40] P.B. Gilkey, Invariance theory, the heat equation and the Atiyah-Singer index theorem, CRC

press, Boca Raton U.S.A. (1995).

[41] Q.-g. Lin, Electron positron pair creation in vacuum by an electromagnetic field in 3+1 and

lower dimensions, J. Phys. G 25 (1999) 17 [hep-th/9810037] [SPIRES].

[42] V.B. Adesi and S. Zerbini, Analytic continuation of the Hurwitz zeta function with physical

application, J. Math. Phys. 43 (2002) 3759 [hep-th/0109136] [SPIRES].

[43] C.A. Manogue, The Klein paradox and superradiance, Ann. Phys. 181 (1988) 261.

[44] R. Brout, S. Massar, S. Popescu, R. Parentani and P. Spindel, Quantum back reaction on a

classical field, Phys. Rev. D 52 (1995) 1119 [hep-th/9311019] [SPIRES].

[45] C. Gabriel and P. Spindel, Quantum charged fields in Rindler space,

Annals Phys. 284 (2000) 263 [gr-qc/9912016] [SPIRES].

[46] J.G. Russo, On Schwinger pair creation in gravity and in closed superstring theory,

JHEP 03 (2009) 080 [arXiv:0901.1664] [SPIRES].

[47] F Belgiorno, S.L. Cacciatori and F. Dalla Piazza, Quantum instability for charged scalar

particles on charged Nariai and ultracold black hole manifolds.

– 32 –

http://dx.doi.org/10.1016/j.nuclphysb.2007.11.029
http://arxiv.org/abs/hep-th/0612064
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0612064
http://dx.doi.org/10.1016/0375-9601(76)90178-X
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,A57,107
http://dx.doi.org/10.1103/PhysRevD.14.870
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,D14,870
http://dx.doi.org/10.1088/1475-7516/2009/02/033
http://arxiv.org/abs/0802.2447
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0802.2447
http://dx.doi.org/10.1103/PhysRevD.79.045024
http://arxiv.org/abs/0811.0349
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0811.0349
http://dx.doi.org/10.1103/PhysRevD.76.125002
http://arxiv.org/abs/0706.2216
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0706.2216
http://dx.doi.org/10.1088/1751-8113/41/16/164046
http://arxiv.org/abs/0710.3933
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPAGB,A41,164046
http://dx.doi.org/10.1103/PhysRevD.16.2402
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,D16,2402
http://dx.doi.org/10.1142/S0217751X91002549
http://arxiv.org/abs/0906.2851
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0906.2851
http://dx.doi.org/10.1088/0954-3899/25/1/003
http://arxiv.org/abs/hep-th/9810037
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPHGB,G25,17
http://dx.doi.org/10.1063/1.1481976
http://arxiv.org/abs/hep-th/0109136
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0109136
http://dx.doi.org/10.1103/PhysRevD.52.1119
http://arxiv.org/abs/hep-th/9311019
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9311019
http://dx.doi.org/10.1006/aphy.2000.6071
http://arxiv.org/abs/gr-qc/9912016
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=GR-QC/9912016
http://dx.doi.org/10.1088/1126-6708/2009/03/080
http://arxiv.org/abs/0901.1664
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0901.1664

	Introduction
	Vacuum instability and thermal states
	Vacuum instability in the transmission coefficient approach
	Finite temperature effects

	Ultracold II case
	The transmission coefficient approach
	The zeta-function approach

	The ultracold I case
	The transmission coefficient approach
	The zeta-function approach
	Instability of the thermal state

	Nariai case
	The transmission coefficient approach
	The zeta-function approach
	Instability of the thermal state

	Conclusions

